宋史 志第二十八 律历八

  1. 九五查询
  2. 古籍查询
  3. 宋史
《宋史》 志第二十八 律历八 脱脱、阿鲁图等

明天历

步晷漏术

二至限:一百八十一日六十二分。

一象度:九十一度三十一分。

消息法:一万六百八十九。

辰法:三千二百五十。

刻法:三百九十。

半辰法:一千六百二十五。

昏明刻分:九百七十五。

昏明:二刻一百九十五分。

冬至岳台晷景常数:一丈二尺八寸五分。

夏至岳台晷景常数:一尺五寸七分。

冬至后初限、夏至后末限:四十五日六十二分。

夏至后初限、冬至后末限:一百三十七日。

求岳台晷景入二至后日数:计入二至后来日数,以二至约余减之,仍加半日之分,即为入二至后来日午中积数及分。

求岳台晷景午中定数:置所求午中积数,如初限以下者为在初;已上者,覆减二至限,余为在末。

其在冬至后初限、夏至后末限者,以入限日减一千九百三十七半,为泛差;仍以入限日分乘其日盈缩积,盈缩积在日度术中。

五因百约之,用减泛差,为定差;乃以入限日分自相乘,以乘定差,满一百万为尺,不满为寸、为分及小分,以减冬至常晷,余为其日午中晷景定数。

若所求入冬至后末限、夏至后初限者,乃三约入限日分,以减四百八十五少,余为泛差;仍以盈缩差减极数,余者若在春分后、秋分前者,直以四约之,以加泛差,为定差;若春分前、秋分后者,以去二分日数及分乘之,满六百而一,以减泛差,余为定差;乃以入限日分自相乘,以乘定差,满一百万为尺,不满为寸、为分及小分,以加夏至常晷,即为其日午中晷景定数。

求每日消息定数:置所求日中日度分,如在二至限以下者为在息;以上者去之,余为在消。

又视入消息度加一象以下者为在初;以上者,覆减二至限,余为在末。

其初、末度自相乘,以一万乘而再折之,满消息法除之,为常数。

乃副之,用减一千九百五十,余以乘其副,满八千六百五十除之,所得以加常数,为所求消息定数。

求每日黄道去极度及赤道内外度:置其日消息定数,以四因之,满三百二十五除之为度,不满,退除为分,所得,在春分后加六十七度三十一分,在秋分后减一百一十五度三十一分,即为所求日黄道去极度及分。

以黄道去极度与一象度相减,余为赤道内、外度。

若去极度少,为日在赤道内;若去极度多,为日在赤道外。

求每日晨昏分及日出入分:以其日消息定数,春分后加六千八百二十五,秋分后减一万七百二十五,余为所求日晨分;用减元法,余为昏分。

以昏明分加晨分,为日出分;减昏分,为日入分。

求每日距中距子度及每更差度:置其日晨分,以七百乘之,满七万四千七百四十二除为度,不满,退除为分,命曰距子度;用减半周天,余为距中度。

若倍距子度,五除之,即为每更差度及分。

若依司辰星漏历,则倍距子度,减去待旦三十六度五十二分半,余以五约之,即每更差度。

求每日夜半定漏:置其日晨分,以刻法除之为刻,不满为分,即所求日夜半定漏。

求每日昼夜刻及日出入辰刻:倍夜半定漏,加五刻,为夜刻。

用减一百刻,余为昼刻。

以昏明刻加夜半定漏,满辰法除之为辰数,不满,刻法除之为刻,又不满,为刻分。

命辰数从子正,算外,即日出辰刻;以昼刻加之,命如前,即日入辰刻。

若以半辰刻加之,即命从辰初也。

求更点辰刻:倍夜半定漏,二十五而一,为点差刻;五因之,为更差刻。

以昏明刻加日入辰刻,即甲夜辰刻;以更点差刻累加之,满辰刻及分去之,各得更点所入辰刻及分。

若同司辰星漏历者,倍夜半定漏,减去待旦一十刻,余依术求之,即同内中更点。

求昏晓及五更中星:置距中度,以其日昏后夜半赤道日度加而命之,即其日昏中星所格宿次,其昏中星便为初更中星;以每更差度加而命之,即乙夜所格中星;累加之,得逐更中星所格宿次。

又倍距子度,加昏中星命之,即晓中星所格宿次。

若同司辰星漏历中星,则倍距子度,减去待旦十刻之度三十六度五十二分半,余约之为五更,即同内中更点中星。

求九服距差日:各于所在立表候之,若地在岳台北,测冬至后与岳台冬至晷景同者,累冬至后至其日,为距差日;若地在岳台南,测夏至后与岳台晷景同者,累夏至后至其日,为距差日。

求九服晷景:若地在岳台北冬至前后者,以冬至前后日数减距差日,为余日;以余日减一千九百三十七半,为泛差;依前术求之,以加岳台冬至晷景常数,为其地其日中晷常数。

若冬至前后日多于距差日,乃减去距差日,余依前术求之,即得其地其日中晷常数。

若地在岳台南夏至前后者,以夏至前后日数减距差日,为余日;乃三约之,以减四百八十五少,为泛差;依前术求之,以减岳台夏至晷景常数,即其地其日中晷常数。

如夏至前后日数多于距差日,乃减岳台夏至常晷,余即晷在表南也。

若夏至前后日多于距差日,即减去距差日,余依前术求之,各得其地其日中晷常数。

若求定数,依立成以求午中晷景定数。

求九服所在昼夜漏刻:冬、夏二至各于所在下水漏,以定其地二至夜刻,乃相减,余为冬、夏至差刻。

置岳台其日消息定数,以其地二至差刻乘之,如岳台二至差刻二十而一,所得,为其地其日消息定数。

乃倍消息定数,满刻法约之为刻,不满为分,乃加减其地二至夜刻,秋分后、春分前,减冬至夜刻;春分后、秋分前,加夏至夜刻。

为其地其日夜刻;用减一百刻,余为昼刻。

其日出入辰刻及距中度五更中星,并依前术求之。

步月离术

转度母:八千一百一十二万。

转终分:二百九十八亿八千二百二十四万二千二百五十一。

朔差:二十一亿四千二百八十八万七千。

朔差:二十六度。

余三千三百七十六万七千,约余四千一百六十二半。

转法:一十亿八千四百四十七万三千。

会周:三百二十亿二千五百一十二万九千二百五十一。

转终:三百六十八度。

余三十八万二千二百五十一,约余三千七百八。

转终:二十七日。

余六亿一百四十七万一千二百五十一,约余五千五百四十六。

中度:一百八十四度。

余一千五百四万一千一百二十五半,约余一千八百五十四。

象度:九十二度。

余七百五十二万五百六十二太,约分九百二十七。

月平行:十三度。

余二千九百九十一万三千,约分三千六百八十七半。

望差:一百九十七度。

余三千一百九十二万四千六百二十五半,约分三千九百三十四。

弦差:九十八度。

余五千六百五十二万二千三百一十二太,约分六千九百六十七。

日衰:一十八、小分九。

求月行入转度:以朔差乘所求积月,满转终分去之,不尽为转余。

满转度母除为度,不满为余,其余若以一万乘之,满转度母除之,即得约分;若以转法除转余,即为入转日及余。

即得所求月加时入转度及余。

若以弦度及余累加之,即得上弦、望、下弦及后朔加时入转度及分;其度若满转终度及余去之。

其入转度如在中度以下为月行在疾历;如在中度以上者,乃减去中度及余,为月入迟历。

求月行迟疾差度及定差:置所求月行入迟速度,如在象度以下为在初。

以上,覆减中度,余为在末。

其度余用约分百为母。

置初、末度于上,列二百一度九分于下,以上减下,余以下乘上,为积数;满一千九百七十六除为度,不满,退除为分,命曰迟疾差度。

在疾为减,在迟为加。

以一万乘积数,满六千七百七十三半除之,为迟疾定差。

疾加、迟减,若用立成者,以其度下损益率乘度余,满转度母而一,所得,随其损益,即得迟疾及定差。

其迟疾、初末损益分为二日者,各加其初、末以乘除。

求朔弦望所直度下月行定分:置迟疾所入初、末度分,进一位,满七百三十九除之,用减一百二十七,余为衰差。

乃以衰差疾初迟末减、迟初疾末加,皆加减平行度分,为其度所直月行定分。

其度以百命为分。

求朔弦望定日:各以日躔盈缩、月行迟疾定差加减经朔、弦、望小余,满若不足,进退大余,命甲子,算外,各得定日日辰及余。

若定朔干名与后朔干名同者月大,不同月小,月内无中气者为闰月。

凡注历,观定朔小余,秋分后四分之三已上者,进一日;若春分后,其定朔晨分差如春分之日者,三约之,以减四分之三;如定朔小余及此数已上者,进一日;朔或当交有食,初亏在日入已前者,其朔不进。

弦、望定小余不满日出分者,退一日;其望或当交有食,初亏在日出已前,其定望小余虽满日出分者,亦退之。

又月行九道迟疾,历有三大二小;日行盈缩累增损之,则有四大三小,理数然也。

若循其常,则当察加时早晚,随其所近而进退之,使月之大小不过连三。

旧说,正月朔有交,必须消息前后一两月,移食在晦、二之日。

且日食当朔,月食当望,盖自然之理。

夫日之食,盖天之垂诫,警悟时政,若道化得中,则变咎为祥。

国家务以至公理天下,不可私移晦朔,宜顺天诫。

故《春秋传》书日食,乃纠正其朔,不可专移食于晦、二。

其正月朔有交,一从近典,不可移避。

求定朔弦望加时日度:置朔、弦、望中日及约分,以日躔盈缩度及分盈加缩减之,又以元法退除迟疾定差,疾加迟减之,余为其朔、弦、望加时定日。

以天正冬至加时黄道日度加而命之,即所求朔、弦、望加时定日所在宿次。

朔、望有交,则依后术。

求月行九道:凡合朔所交,冬在阴历,夏在阳历,月行青道。

冬至、夏至后,青道半交在春分之宿,当黄道东。

立夏、立冬后,青道半交在立春之宿,当黄道东南;至所冲之宿亦如之。

冬在阳历,夏在阴历,月行白道。

冬至、夏至后,白道半交在秋分之宿,当黄道西;立冬、立夏后,白道半交在立秋之宿,当黄道西北;至所冲之宿亦如之。

春在阳历,秋在阴历,月行朱道。

春分、秋分后,朱道交在夏至之宿,当黄道南;立春、立秋后,朱道半交在立夏之宿,当黄道西南:至所冲之宿亦如之。

春在阴历,秋在阳历,月行黑道。

春分、秋分后,黑道半交在冬至之宿,当黄道正北。

立春、立秋后,黑道半交在立冬之宿,当黄道东北;至所冲之宿亦如之。

四序离为八节,至阴阳之所交,皆与黄道相会,故月行九道。

各视月所入正交积度,视正交九道宿度所入节候,即其道、其节所起。

满象度及分去之余,入交积度及象度并在交会术中。

若在半象以下为在初限。

以上,覆减象度及分,为在末限。

用减一百一十一度三十七分,余以所入初、末限度及分乘之,退位,半之,满百为度,不满为分,所得为月行与黄道差数。

距半交后、正交前,以差数减;距正交后、半交前,以差数加。

此加减出入六度,单与黄道相较之数,若较之赤道,随数迁变不常。

计去二至以来度数,乘黄道所差,九十而一,为月行与黄道差数。

凡日以赤道内为阴,外为阳;月以黄道内为阴,外为阳。

故月行宿度,入春分交后行阴历,秋分交后行阳历,皆为同名;若入春分交后行阳历,秋分交后行阴历,皆为异名。

其在同名,以差数加者加之,减者减之;其在异名,以差数加者减之,减者加之。

皆加减黄道宿积度,为九道宿积度;以前宿九道宿积度减其宿九道宿积度,余为其宿九道宿度及分。

其分就近约为太、半、少三数。

求月行九道入交度:置其朔加时定日度,以其朔交初度及分减之,余为其朔加时月行入交度及余。

其余以一万乘之,以元法退除之,即为约余。

以天正冬至加时黄道日度加而命之,即正交月离所在黄道宿度。

求正交加时月离九道宿度:以正交度及分减一百一十一度三十七分,余以正交度及分乘之,退一等,半之,满百为度,不满为分,所得,命曰定差。

以定差加黄道宿度,计去冬、夏至以来度数,乘定差,九十而一,所得,依同异名加减之,满若不足,进退其度,命如前,即正交加时月离九道宿度及分。

求定朔弦望加时月离所在宿度:各置其日加时日躔所在,变从九道,循次相加。

凡合朔加时,月行潜在日下,与太阳同度,是为加时月离宿次。

先置朔、弦、望加时黄道宿度,以正交加时黄道宿度减之,余以加其正交加时九道宿度,命起正交宿次,算外,即朔、弦、望加时所当九道宿度。

其合朔加时若非正近,则日在黄道、月在九道各入宿度,虽多少不同,考其去极,若应绳准。

故云月行潜在日下,与太阳同度。

各以弦、望度及分加其所当九道宿度,满宿次去之,各得加时九道月离宿次。

求定朔夜半入转:以所求经朔小余减其朔加时入转日余,其经朔小余,以二万七千八百七乘之,即母转法。

为其经朔夜半入转。

若定朔大余有进退者,亦进退转日,无进退则因经为定。

其余以转法退收之,即为约分。

求次月定朔夜半入转:因定朔夜半入转,大月加二日,小月加一日,余、分皆加四千四百五十四,满转终日及约分去之,即次月定朔夜半入转;累加一日,去命如前,各得逐日夜半入转日及分。

求定朔弦望夜半月度:各置加时小余,若非朔、望有交者,有用定朔、弦、望小余。

以其日月行定分乘之,满元法而一为度,不满,退除为分,命曰加时度。

以减其日加时月度,即各得所求夜半月度。

求晨昏月:以晨分乘其日月行定分,元法而一,为晨度;用减月行定分,余为昏度。

各以晨昏度加夜半月度,即所求晨昏月所在宿度。

求朔弦望晨昏定程:各以其朔昏定月减上弦昏定月,余为朔后昏定程;以上弦昏定月减望昏定月,余为上弦后昏定程;以望晨定月减下弦晨定月,余为望后晨定程;以下弦晨定月减次朔晨定月,余为下弦后晨定程。

求转积度:计四七日月行定分,以日衰加减之,为逐日月行定程;乃自所入日计求定之,为其程转积度分。

其四七日月行定分者,初日益迟一千二百一十,七日渐疾一千三百四十一,十四日损疾一千四百六十一,二十一日渐迟一千三百二十八,乃观其迟疾之极差而损益之,以百为分母。

求每日晨昏月:以转积度与晨昏定程相减,余以距后程日数除之,为日差。

定程多为加,定程少为减。

以加减每日月行定分,为每日转定度及分。

以每日转定度及分加朔、弦、望晨昏月,满九道宿次去之,即为每日晨、昏月离所在宿度及分。

凡注历,朔后注昏,望后注晨。

已前月度,并依九道所推,以究算术之精微。

若注历求其速要者,即依后术以推黄道月度。

求天正十一月定朔夜半平行月:以天正经朔小余乘平行度分,元法而一为度,不满,退除为分秒,所得,为经朔加时度。

用减其朔中日,即经朔晨前夜半平行月积度。

若定朔有进退,以平行度分加减之。

即为天正十一月定朔之日晨前夜半平行月积度及分。

求次月定朔之日夜半平行月:置天正定朔之日夜半平行月,大月加三十五度八十分六十一秒,小月加二十二度四十三分七十三秒半,满周天度分即去之,即每月定朔之晨前夜半平行月积度及分秒。

求定弦望夜半平行月、计弦、望距定朔日数,以乘平行度及分秒,以加其定朔夜半平行月积度及分秒,即定弦、望之日夜半平行月积度及分秒。

亦可直求朔望,不复求度,从简易也。

求天正定朔夜半入转度:置天正经朔小余,以平行月度及分乘之,满元法除为度,不满,退除为分秒,命为加时度;以减天正十一月经朔加时入转度及约分,余为天正十一月经朔夜半入转度及分。

若定朔大余有进退者,亦进退平行度分,即为天正十一月定朔之日晨前夜半入转度及分秒。

求次月定朔及弦望夜半入转度:因天正十一月定朔夜半入转度分,大月加三十二度六十九分一十七秒,小月加十九度三十二分二十九秒半,即各得次月定朔夜半入转度及分。

各以朔、弦、望相距日数乘平行度分以加之,满转终度及秒即去之,如在中度以下者为在疾;以上者去之,余为入迟历,即各得次朔、弦、望定日晨前夜半入转度及分。

若以平行月度及分收之,即为定朔、弦、望入转日。

求定朔弦望夜半定月:以定朔、弦、望夜半入转度分乘其度损益衰,以一万约之为分,百约之为秒,损益其度下迟疾度,为迟疾定度。

乃以迟加疾减夜半平行月,为朔、弦、望夜半定月积度。

以冬至加时黄道日度加而命之,即定朔、弦、望夜半月离所在宿次。

若有求晨昏月,以其日晨昏分乘其日月行定分,元法而一,所得为晨昏度;以加其夜半定月,即得朔、弦、望晨昏月度。

求朔弦望定程:各以朔、弦、望定月相减,余为定程。

若求晨昏定程,则用晨昏定月相减,朔后用昏,望后用晨。

求朔弦望转积度分:计四七日月行定分,以日衰加减之,为逐日月行定分;乃自所入日计之,为其程转积度分。

其四七日月行定分者,初日益迟一千二百一十,七日渐疾一千三百四十一,十四日损疾一千四百六十一,二十一日渐迟一千三百二十八,乃视其迟疾之极差而损益之,分以百为母。

求每日月离宿次:各以其朔、弦、望定程与转积度相减,余为程差。

以距后程日数除之,为日差。

定程多为益差,定程少为损差。

以日差加减月行定分。

为每日月行定分;以每日月行定分累加定朔、弦、望夜半月在宿次,命之,即每日晨前夜半月离宿次。

如晨昏宿次,即得每日晨昏月度。

步交会术

交度母:六百二十四万。

周天分:二十二亿七千九百二十万四百四十七。

朔差:九百九十万一千一百五十九。

朔差:一度、余三百六十六万一千一百五十九。

望差:空度、余四百九十五万五百七十九半。

半周天:一百八十二度。

余三百九十二万二百二十三半,约分六千二百八十二。

日食限:一千四百六十四。

月食限:一千三百三十八。

盈初限缩末限:六十度八十七分半。

缩初限盈末限:一百二十一度七十五分。

求交初度:置所求积月,以朔差乘之,满周天分去之,不尽,覆减周天分,满交度母除之为度,不满为余,即得所求月交初度及余;以半周天加之,满周天去之,余为交中度及余。

若以望差减之,即得其月望交初度及余;以朔差减之,即得次月交初度及余;以交度母退除,即得余分。

若以天正黄道日度加而命之,即各得交初、中所在宿度及分。

求日月食甚小余及加时辰刻:以其朔、望月行迟疾定差疾加迟减经朔望小余,若不足减者,退大余一,加元法以减之;若加之满元法者,但积其数。

以一千三百三十七乘之,满其度所直月行定分除之,为月行差数;乃以日躔盈定差盈加缩减之,余为其朔、望食甚小余。

凡加减满若不足,进退其日,此朔望加时以究月行迟疾之数,若非有交会,直以经定小余为定。

置之,如前发敛加时术入之,即各得日、月食甚所在晨刻。

视食甚小余,如半法以下者,覆减半法,余为午前分;半法已上者,减去半法,余为午后分。

求朔望加时日月度:以其朔、望加时小余与经朔望小余相减,余以元法退收之,以加减其朔、望中日及约分,经朔望少,加;经朔望多,减。

为其朔、望加时中日。

乃以所入日升降分乘所入日约分,以一万约之,所得,随以损益其日下盈缩积,为盈缩定度;以盈加缩减加时中日,为其朔、望加时定日;望则更加半周天,为加时定月;以天正冬至加时黄道日度加而命之,即得所求朔、望加时日月所在宿度及分。

求朔望日月加时去交度分:置朔望日月加时定度与交初、交中度相减,余为去交度分。

就近者相减之,其度以百通之为分。

加时度多为后,少为前,即得其朔望去交前、后分。

交初后、交中前,为月行外道阳历;交中后、交初前,为月行内道阴历。

求日食四正食差定数:置其朔加时定日,如半周天以下者为在盈。

以上者去之,余为在缩。

视之,如在初限以下者为在初。

以上者,覆减二至限,余为在末。

置初、末限度及分,盈初限、缩末限者倍之。

置于上位,列二百四十三度半于下,以上减下,余以下乘上,以一百六乘之,满三千九十三除之,为东西食差泛数。

用减五百八,余为南北食差泛数。

其求南北食差定数者,乃视午前、后分,如四分法之一以下者覆减之,余以乘泛数。

若以上者即去之,余以乘泛数,皆满九千七百五十除之,为南北食差定数。

盈初缩末限者,食甚在卯酉以南,内减外加;食甚在卯酉以北,内加外减。

缩初盈末限者,食甚在卯酉以南,内加外减;食甚在卯酉以北,内减外加。

其求东西食差定数者,乃视午前、后分,如四分法之一以下者以乘泛数;以上者,覆减半法,余乘泛数,皆满九千七百五十除之,为东西食差定数。

盈初缩末限者,食甚在子午以东,内减外加;食甚在子午以西,内加外减。

缩初盈末限者,食甚在子午以东,内加外减;食甚在子午以西,内减外加。

即得其朔四正食差加减定数。

求日月食去交定分:视其朔四正食差,加减定数,同名相从,异名相消,余为食差加减总数;以加减去交分,余为日食去交定分。

其去交定分不足减、乃覆减食差总数、若阳历覆减入阴历,为入食限;若阴历覆减入阳历,为不入食限。

凡加之满食限以上者,亦不入食限。

其望食者,以其望去交分便为其望月食去交定分。

求日月食分:日食者,视去交定分,如食限三之一以下者倍之,类同阳历食分。

以上者,覆减食限,余为阴历食分。

皆进一位,满九百七十六除为大分,不满,退除为小分,命十为限,即日食之大、小分。

月食者,视去交定分,如食限三之一以下者,食既;以上者,覆减食限。

余进一位,满八百九十二除之为大分,不满,退除为小分,命十为限,即月食之大、小分。

其食不满大分者,虽交而数浅,或不见食也。

求日食泛用刻分:置阴、阳历食分于上,列一千九百五十二于下,以上减下,余以乘上,满二百七十一除之,为日食泛用刻、分。

求月食泛用刻分:置去交定分,自相乘,交初以四百五十九除,交中以五百四十除之,所得,交初以减三千九百,交中以减三千三百一十五,余为月食泛用刻、分。

求日月食定用刻分:置日月食泛用刻、分,以一千三百三十七乘之,以所直度下月行定分除之,所得为日月食定用刻、分。

求日月食亏初复满时刻:以定用刻分减食甚小余,为亏初小余;加食甚,为复满小余;各满辰法为辰数,不尽,满刻法除之为刻数,不满为分。

命辰数从子正,算外,即得亏初、复末辰、刻及分。

若以半辰数加之,即命从时初也。

求日月食初亏复满方位:其日食在阳历者,初食西南,甚于正南,复于东南;日在阴历者,初食西北,甚于正北,复于东北。

其食过八分者,皆初食正西,复于正东。

其月食者,月在阴历,初食东南,甚于正南,复于西南;月在阳历,初食东北,甚于正北,复于西北。

其食八分已上者,皆初食正东,复于正西。

此皆审其食甚所向,据午正而论之,其食余方察其斜正,则初亏、复满乃可知矣。

求月食更点定法:倍其望晨分,五而一,为更法;又五而一,为点法。

若依司辰星注历,同内中更点,则倍晨分,减去待旦十刻之分,余,五而一,为更法;又五而一,为点法。

求月食入更点:各置初亏、食甚、复满小余,如在晨分以下者加晨分,如在昏分以上者减去昏分,余以更法除之为更数,不满,以点法除之为点数。

其更数命初更,算外,即各得所入更、点。

求月食既内外刻分:置月食去交分,覆减食限三之一,不及减者为食不既。

余列于上位;乃列三之二于下,以上减下,余以下乘上,以一百七十除之,所得,以定用刻分乘之,满泛用刻分除之,为月食既内刻分;用减定用刻分,余为既外刻、分。

求日月带食出入所见分数:视食甚小余在日出分以下者,为月见食甚、日不见食甚;以日出分减复满小余,若食甚小余在日出分已上者,为日见食甚、月不见食甚;以初亏小余减日出分,各为带食差;若月食既者,以既内刻分减带食差,余乘所食分,既外刻分而一,不及减者,即带食既出入也。

以乘所食之分,满定用刻分而一,即各为日带食出、月带食入所见之分。

凡亏初小余多如日出分为在昼,复满小余多如日出分为在夜,不带食出入也。

若食甚小余在日入分以下者,为日见食甚、月不见食甚;以日入分减复满小余,若食甚小余在日入分已上者,为月见食甚、日不见食甚;以初亏小余减日入分,各为带食差;若月食既者,以既内刻分减带食差,余乘所差分,既外刻分而一,不及减者,即带食既出入也。

以乘所食之分,满定用刻分而一,即各为日带食入、月带食出所见之分。

凡亏初小余多如日入分为在夜,复满小余少如日入分为在昼,并不带食出入也。

步五星术

木星终率:一千五百五十五万六千五百四。

终日:三百九十八日。

余三万四千五百四,约分八千八百四十七。

历差:六万一千七百五十。

见伏常度:一十四度。

火星终率:三千四十一万七千五百三十六。

终日:七百七十九日。

余三万六千五百三十六,约分九千三百六十八。

历差:六万一千二百四十。

见伏常度:一十八度。

土星终率:一千四百七十四万五千四百四十六。

终日:三百七十八。

余三千四百四十六,约分八百八十三。

历差:六万一千三百五十。

见伏常度:一十八度半。

金星终率:二千二百七十七万二千一百九十六。

终日:五百八十三日。

余三万五千一百九十六,约分九千二十四。

见伏常度:一十一度少。

水星终率:四百五十一万九千一百八十四。

改九千一百九十四。

终日:一百一十五日。

余三万四千一百八十四,约分八千七百六十五。

见伏常度:一十八度。

求五星天正冬至后诸段中积中星:置气积分,各以其星终率去之,不尽,覆减终率,余满元法为日,不满,退除为分,即天正冬至后其星平合中积。

重列之为中星,因命为前一段之初,以诸段变日、变度累加减之,即为诸段中星。

变日加减中积,变度加减中星。

求木火土三星入历:以其星历差乘积年,满周天分去之,不尽,以度母除之为度,不满,退除为分,命曰差度;以减其星平合中星,即为平合入历度分;以其星其段历度加之,满周天度分即去之,各得其星其段入历度分。

金、水附日而行,更不求历差。

其木、火、土三星前变为晨,后变为夕。

金、水二星前变为夕,后变为晨。

求木火土三星诸段盈缩定差:木、土二星,置其星其段入历度分,如半周天以下者为在盈。

以上者,减去半周天,余为在缩。

置盈缩度分,如在一象以下者为在初限。

以上者,覆减半周天,余为在末限。

置初、末限度及分于上,列半周天于下,以上减下,以下乘上,木进一位,土九因之。

皆满百为分,分满百为度,命曰盈缩定差。

其火星,置盈缩度分,如在初限以下者为在初。

以上者,覆减半周天,余为在末。

以四十五度六十五分半为盈初、缩末限度,以一百三十六度九十六分半为缩初、盈末限度分。

置初、末限度于上,盈初、缩末三因之。

列二百七十三度九十三分于下,以上减下,余以下乘上,以一十二乘之,满百为度,不满,百约为分,命曰盈缩定差。

若用立成法,以其度下损益率乘度下约分,满百者,以损益其度下盈缩差度为盈缩定差,若在留退段者,即在盈缩泛差。

求木火土三星留退差:置后退、后留盈缩泛差,各列其星盈缩极度于下,木极度,八度三十三分;火极度,二十二度五十一分;土极度,七度五十分。

以上减下,余以下乘上,水、土三因之,火倍之。

皆满百为度,命曰留退差。

后退初半之,后留全用。

其留退差,在盈益减损加、在缩损减益加其段盈缩泛差,为后退、后留定差。

因为后迟初段定差,各须类会前留定差,观其盈缩,察其降差也。

求五星诸段定积:各置其星其段中积,以其段盈缩定差盈加缩减之,即其星其段定积及分;以天正冬至大余及约分加之,满纪法去之,不尽,命甲子,算外,即得日辰。

其五星合见、伏,即为推算段定日;后求见、伏合定日,即历注其日。

求五星诸段所在月日:各置诸段定积,以天正闰日及约分加之,满朔策及分去之,为月数;不满,为入月以来日数及分。

其月数命从天正十一月,算外,即其星其段入其月经朔日数及分。

定朔有进退者,亦进退其日,以日辰为定。

若以气策及约分去定积,命从冬至,算外,即得其段入气日及分。

求五星诸段加时定星:各置其星其段中星,以其段盈缩定差盈加缩减之,即五星诸段定星。

若以天正冬至加时黄道日度加而命之,即其段加时定星所在宿次。

五星皆以前留为前退初定星,后留为后顺初定星。

求五星诸段初日晨前夜半定星:木、火、土三星,以其星其段盈缩定差与次度下盈缩定差相减,余为其度损益差;以乘其段初行率,一百约之,所得,以加减其段初行率,在盈,益加损减;在缩,益减损加。

以一百乘之,为初行积分;又置一百分,亦依其数加减之,以除初行积分,为初日定行分。

以乘其段初日约分,以一百约之,顺减退加其段定星,为其段初日晨前夜半定星;以天正冬至加时黄道日度加而命之,即得所求。

金、水二星,直以初行率便为初日定行分。

求太阳盈缩度:各置其段定积,如二至限以下为在盈;以上者去之,余为在缩。

又视入盈缩度,如一象以下者为在初;以上者,覆减二至限,余为在末。

置初、末限度及分,如前日度术求之,即得所求。

若用立成者,直以其度下损益分乘度余,百约之,所得,损益其度下盈缩差,亦得所求。

求诸段日度率:以二段日晨相距为日率,又以二段夜半定星相减,余为其段度率及分。

求诸段平行分:各置其段度率及分,以其段日率除之,为其段平行分。

求诸段泛差:各以其段平行分与后段平行分相减,余为泛差;并前段泛差,四因之,退一等,为其段总差。

五星前留前、后留后一段,皆以六因平行分,退一等,为其段总差,水星为半总差。

其在退行者,木、火、土以十二乘其段平行分,退一等,为其段总差。

金星退行者,以其段泛差为总差,后变则反用初、末。

水星退行者,以其段平行分为总差,若在前后顺第一段者,乃半次段总差,为其段总差。

求诸段初末日行分:各半其段总差,加减其段平行分,为其段初、末日行分。

前变加为初,减为末;后变减为初,加为末。

其在退段者,前则减为初,加为末;后则加为初,减为末。

若前后段行分多少不伦者,乃平注之;或总差不备大分者,亦平注之:皆类会前后初、末,不可失其衰杀。

求诸段日差:减其段日率一,以除其段总差,为其段日差。

后行分少为损,后行分多为益。

求每日晨前夜半星行宿次:置其段初日行分,以日差累损益之,为每日行分。

以每日行分累加减其段初日晨前夜半宿次,命之,即每日星行宿次。

径求其日宿次:置所求日,减一,以乘日差,以加减初日行分,后少,减之;后多,加之。

为所求日行分;乃加初日行分而半之,以所求日数乘之,为径求积度;以加减其段初日宿次,命之,即径求其日星宿次。

求五星定合定日:木、火、土三星,以其段初日行分减一百分,余以除其日太阳盈缩余为日,不满,退除为分,命曰距合差日及分。

以差日及分减太阳盈缩分,余为距合差度。

以差日、差度盈减缩加。

金、水二星平合者,以百分减初日行分,余以除其日太阳盈缩余为日,不满,退除为分,命曰距合差日及分。

以减太阳盈缩分,余为距合差度。

以差日、差度盈加缩减。

金、水星再合者,以初日行分加一百分,以除其日太阳盈缩分为日,不满,退除为分,命曰再合差日;以减太阳盈缩分,余为再合差度。

以差日、差度盈加缩减。

差度则反其加减。

皆以加减定积,为再合定日。

以天正冬至大余及约分加而命之,即得定合日辰。

求五星定见伏:木、火、土三星,各以其段初日行分减一百分,余以除其日太阳盈缩分为日,不满,退除为分,以盈减缩加。

金、水二星夕见、晨伏者,以一百分减初日行分,余以除其日太阳盈缩分为日,不满,退除为分,以盈加缩减。

其在晨见、夕伏者,以一百分加其段初日行分,以除其日太阳盈缩分为日,不满,退除为分,以盈减缩加。

皆加减其段定积,为见、伏定日。

以加冬至大余及约分,满纪法去之,命从甲子,算外,即得五星见、伏定日日辰。

琮又论历曰:"古今之历,必有术过于前人,而可以为万世之法者,乃为胜也。 若一行为《大衍历》,议及略例,校正历世,以求历法强弱,为历家体要,得中平之数。 刘焯悟日行有盈缩之差。 旧历推日行平行一度,至此方悟日行有盈缩,冬至前后定日八十八日八十九分,夏至前后定日九十三日七十四分,冬至前后日行一度有余,夏至前后日行不及一度。 李淳风悟定朔之法,并气朔、闰余,皆同一术。 旧历定朔平注一大一小,至此以日行盈缩、月行迟疾加减朔余,余为定朔、望加时,以定大小,不过三数。 自此后日食在朔,月食在望,更无晦、二之差。 旧历皆须用章岁、章月之数,使闰余有差,淳风造《麟德历》,以气朔、闰余同归一母。 张子信悟月行有交道表里,五星有入气加减。 北齐学士张子信因葛荣乱,隐居海岛三十余年,专以圆仪揆测天道,始悟月行有交道表里,在表为外道阳历,在里为内道阴历。 月行在内道,则日有食之,月行在外道则无食。 若月外之人北户向日之地,则反观有食。 又旧历五星率无盈缩,至是始悟五星皆有盈缩、加减之数。 宋何承天始悟测景以定气序。 景极长,冬至;景极短,夏至。 始立八尺之表,连测十余年,即知旧《景初历》冬至常迟天三日。 乃造《元嘉历》,冬至加时比旧退减三日。 晋姜岌始悟以月食所冲之宿,为日所在之度。 日所在不知宿度,至此以月食之宿所冲,为日所在宿度。 后汉刘洪作《干象历》,始悟月行有迟疾数。 旧历,月平行十三度十九分度之七,至是始悟月行有迟疾之差,极迟则日行十二度强,极疾则日行十四度太,其迟疾极差五度有余。 宋祖冲之始悟岁差。 《书·尧典》曰:“日短星昴,以正仲冬;宵中星虚,以殷仲秋。"

至今三千余年,中星所差三十余度,则知每岁有渐差之数,造《大明历》率四十五年九月而退差一度。

唐徐升作《宣明历》,悟日食有气、刻差数。

旧历推日食皆平求食分,多不允合,至是推日食,以气刻差数增损之,测日食分数,稍近天验。

《明天历》悟日月会合为朔,所立日法,积年有自然之数,及立法推求晷景,知气节加时所在。

自《元嘉历》后所立日法,以四十九分之二十六为强率、以十七分之九为弱率,并强弱之数为日法、朔余,自后诸历效之。

殊不知日月会合为朔,并朔余虚分为日法,盖自然之理。

其气节加时,晋、汉以来约而要取,有差半日,今立法推求,得尽其数。

后之造历者,莫不遵用焉。

其疏谬之甚者,即苗守信之《干元历》、马重绩之《调元历》、郭绍之《五纪历》也。

大概无出于此矣。

然造历者,皆须会日月之行,以为晦朔之数,验《春秋》日食,以明强弱。

其于气序,则取验于《传》之南至。

其日行盈缩、月行迟疾、五星加减、二曜食差、日宿月离、中星晷景、立数立法,悉本之于前语。

然后较验,上自夏仲康五年九月"辰弗集于房",以至于今,其星辰气朔、日月交食等,使三千年间若应准绳。

而有前有后、有亲有疏者,即为中平之数,乃可施于后世。

其较验则依一行、孙思恭,取数多而不以少,得为亲密。

较日月交食,若一分二刻以下为亲,二分四刻以下为近,三分五刻以上为远。

以历注有食而天验无食,或天验有食而历注无食者为失。

其较星度,则以差天二度以下为亲,三度以下为近,四度以上为远;其较晷景尺寸,以二分以下为亲,三分以下为近,四分以上为远。

若较古而得数多,又近于今,兼立法、立数,得其理而通于本者为最也。”

琮自谓善历,尝曰:"世之知历者甚少,近世独孙思恭为妙。"

而思恭又尝推刘羲叟为知历焉。



友情链接: 九五查询  古籍史书  老黄历  
免责说明:本站内容全部由九五查询从互联网搜集编辑整理而成,版权归原作者所有,如有冒犯,请联系我们删除。
Copyright © 2025 95cx.com All Rights Reserved. 九五查询(95cx.com)鄂ICP备2022010353号-6